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An AC dipole is used to excite driven transverse motions of a beam for synchrotron diagnosis. The driven
oscillation excited by an AC dipole differs from the free oscillation and the difference could affect linear optics
measurements more than 6% in the LHC, RHIC, and Tevatron. An AC dipole changes the amplitude function
of the betatron motion like a thin quadrupole magnet. By introducing a proper amplitude function for the driven
motion, the difference between the free and driven oscillation becomes clearer and the data interpretation of the
driven oscillation is simplified.

PACS numbers: 29.27.-a, 41.85.-p

I. INTRODUCTION

An AC dipole produces an oscillating dipole magnetic field
and excites transverse motions of a beam in a synchrotron for
machine diagnosis (Fig 1). Unlike conventional single turn
kicker/pinger magnets, it drives a beam close to the betatron
frequency typically for several thousands revolutions. If its
magnetic field is adiabatically changed, it can create large co-
herent oscillations without decoherence and emittance growth
[1]. This property of an AC dipole make it a useful diagnosis
tool for a synchrotron, especially when it is used with a good
beam position monitor (BPM) system.

AC dipoles have been used in the BNL RHIC [2] and was

AC dipole

CDF

D0

FIG. 1: An image of the incoherent free oscillations (gray) and co-
herent driven oscillations (black) excited by the Tevatron AC dipole.
Since free betatron oscillations of individual particles are incoherent,
coherent oscillations must be excited to observe oscillations and di-
agnose an accelerator. An AC dipole is one of such tool to excited co-
herent transverse motions in a synchrotron like a pinger/kicker mag-
net.

also tested in the BNL AGS [1] and CERN SPS [3]. For the
FNAL Tevatron a vertical AC dipole has been in operations
[4–6]. A motivation to use AC dipoles for the Tevatron is its
recently recently upgraded BPM system whose resolution is
about 20 µm [7]. There is also an ongoing project to develop
AC dipoles for LHC too [8].

The driven oscillation excited by an AC dipole is different
from the free oscillation and the difference can be clearly seen
with the Tevatron BPM system. If the difference is simply ig-
nored, linear optics measurements could be affected more than
6% in the LHC and RHIC and 12% in the Tevatron. This pa-
per presents a model of the driven betatron oscillation which
clarify the difference between the free and driven oscillation.
It also helps data interpretation of the driven oscillation and
shows an analogy between an oscillating dipole field and gra-
dient error.

II. A MODEL OF THE DRIVEN OSCILLATION

An oscillating dipole field of an AC dipole creates two driv-
ing term. The existence of two driving terms make the dif-
ference between the free and driven oscillation. This section
present a new expression of the driven oscillation which is
convenient to treat two driving terms at the same time. It also
shows the difference of the free and driven oscillations can be
explained as the difference of their amplitude functions.

A. Two Driving Terms of an Oscillating Dipole Field

The tune of an AC dipole νacd is the the ratio between the
frequencies of the AC dipole facd and the beam revolution
frev: νacd = facd/ frev. In the following, for any tunes, only
their fractional parts are considered. For instance, if facd/ frev
is larger than one, the tune of the AC dipole νacd is the frac-
tional part of facd/ frev. From the Nypquist sampling theorem
[? ], 1−νacd is also the tune of the AC dipole for a circulat-
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FIG. 2: The tune spread and resonance curves of two driving terms
created by an oscillating dipole field of an AC dipole. The shaded
area represents the tune spread of a beam. The solid and dashed lines
are resonance curves of the two driving terms. In typical operations
of an AC dipole, two driving terms are outside of the tune spread to
prevent beam losses. For the LHC, RHIC, and Tevatron, the mini-
mum |δd | is about 0.01. The secondary driving term at 1−νd causes
the difference between the free and driven oscillations. When the ma-
chine tune gets closer to the half integer, the secondary driving term
also gets closer to the machine tune and its effect on a beam gets
larger. Since the machine tunes of the LHC, RHIC, and Tevatron
are about 0.3, 0.7, and 0.58, the secondary driving term has larger
impacts in the Tevatron than the LHC and RHIC.

ing beam. Hence, an oscillating dipole field creates a pair of
driving terms at νacd and 1−νacd. Obviously, the driving term
closer to the machine tune ν (which is also 0 < ν < 1) has
bigger effects on a beam. In the following, the driving term
closer to ν is called the primary and the other is called the

secondary. A symbol νd is used for the primary driving tune:

νd ≡
{

νacd when |νacd−ν |< |(1−νacd)−ν |
1−νacd when |(1−νacd)−ν |< |νacd−ν | . (1)

For example, frequencies of the AC dipole and beam revolu-
tion in the Tevatron are facd ' 20.5 kHz and frev ' 47.7 kHz
and hence the tune of the AC dipole is νacd = 20.5/47.7 '
0.43. Since the machine tune of the Tevatron is ν ' 0.58,
1−νacd ' 0.57 is the primary driving tune and νacd ' 0.43 is
secondary in this case.

The distance from the primary driving term to the machine
tune δd ≡ νd−ν is an important parameter of the driven beta-
tron oscillation. As seen in later, the existence of two driving
terms makes a difference between the free and driven oscil-
lations and affects linear optics measurements. Ideally, if a
beam is driven very close to a machine tune ν (δd → 0), the
effect of the primary driving term becomes dominant and the
secondary driving term can be simply ignored. In reality, how-
ever, the finite tune spread of a beam causes beam losses if
|δd | is too small and there is always a limit for |δd | (Fig 2).
The AC dipoles are currently used in the RHIC and Tevatron
and will be used in the LHC. In these synchrotrons, the min-
imum |δd | is about 0.01 to prevent beam losses. To measure
the linear optics of these synchrotrons better than 6% accu-
racy, |δd | = 0.01 is not small enough to ignore the secondary
driving.

In usual operations of an AC dipole, its magnetic field is
first adiabatically ramped up and kept at the maximum dur-
ing a measurement. When the field is at the maximum, the
position of the driven beam xd is given by [1, 10, 11]

xd(nC +∆s)' θacd
√

βacd

4sin[π(νacd−ν)]

√
β (∆s)cos[2πνacdn+ψ(∆s)+π(νacd−ν)+ χacd]

+
θacd

√
βacd

4sin[π((1−νacd)−ν)]

√
β (∆s)cos[2π(1−νacd)n+ψ(∆s)+π((1−νacd)−ν)−χacd] , (2)

where C is the circumference of a ring, ∆s (0 < ∆s < C) is
the longitudinal position measured from the location of the
AC dipole, θacd is the maximum kick angle of an AC dipole
which depends on its integrated field strength and the mag-
netic rigidity of the beam, βacd is the amplitude function at the
location of the AC dipole, ψ is the phase advance of the free
oscillation measured from the location of the AC dipole, and
χacd is the initial phase of the AC dipole. Two terms in Eq 2
are completely symmetric and represent the effects from two
driving terms [? ]. Define a parameter λd which describes the
ratio between the primary and secondary modes:

λd ≡ sin(πδd)
sin(2πν +πδd)

=
sin[π(νd −ν)]

sin[π((1−νd)−ν)]
. (3)

As discussed previously, the minimum |δd | is about 0.01 for
the hadron synchrotrons where AC dipoles are used. When
|δd | = 0.01, |λd | ' 0.06 for the Tevatron with ν ' 0.58 and
|λd | ' 0.03 for the LHC and RHIC with ν ' 0.3 or 0.7. This
is the effect of the secondary driving term on the beam motion.

B. A New Parametrization of the Driven Betatron Oscillation

As seen later, this 6% effect of the secondary driving term
can be clearly observed for the driven oscillation in the Teva-
tron. This section presents another expression of the driven
motion to get better understanding of the secondary driving
term effect. Eq 2 can be actually written in the following com-
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pact form which includes the effects from both driving terms:

xd(s;δd) = Ad(δd)
√

βd(s;δd)cos(ψd(s;δd)±χacd) , (4)

where Ad is a quantity with dimensions of (length)1/2:

Ad(δd)≡ θacd

4sin(πδd)

√
(1−λ 2

d )βacd , (5)

βd is the amplitude function of the driven oscillation:

βd(s;δd)≡
1+λ 2

d −2λd cos(2ψ(s)−2πν)
1−λ 2

d
β (s) , (6)

ψd is the phase advance of the driven oscillation measured
from the location of the AC dipole:

ψd(s;δd)≡
∫ s

0

ds̄
βd(s̄;δd)

, (7)

and the sign in front of χacd is positive when νd = νacd and
negative when νd = 1−νacd. Hence, the position of the driven
oscillation can be written in the same form as the free oscilla-
tion even when the effect of the both driving term is included.
Since Ad is a constant of motion, the difference between the
free and driven oscillations comes from the amplitude func-
tion βd and phase advance ψd . As discussed previously, in
the limit νd → ν , the primary driving term becomes dominant
and the secondary driving term can be ignored. Since λd → 0
in this limit, βd and ψd converge to β and ψ . Therefore, the
changes of the amplitude function and phase advance due to
the secondary driving term.

A relation between the phase advances of free and driven
oscillations, ψ and ψd , is given by

tan(ψd −πνd) =
1+λd

1−λd
tan(ψ−πν)

=
tan(πνd)
tan(πν)

tan(ψ−πν) . (8)

For the free oscillation, the phase advance in a single turn is
ψ(s +C)−ψ(s) = 2πν (mod 2π). From the equation above,
the phase advance of the driven oscillation in a single turn is
ψd(s+C)−ψd(s) = 2πνd (mod 2π).

III. PROPERTIES OF THE AMPLITUDE FUNCTION βd

As seen in the previous section, the difference between the
free and driven oscillations lies in the difference of their am-
plitude functions. Understanding properties of the amplitude
function for the driven oscillation βd is crucial when an AC
dipole is used for synchrotron diagnosis.

A. Review of a Gradient Error

If a synchrotron has a gradient error, its machine tune ν and
amplitude function β change [9]. Since tune and amplitude

function are coupled in betatron oscillations, a change in tune
involves a change in amplitude function and vice versa. This
is true for the driven betatron oscillation too. When a beam
is driven by an AC dipole, its tune is the primary driving tune
νd instead of the machine tune ν . As seen in the previous
section, the amplitude function also changes to βd from β . As
a matter of fact, the relation between the changes of the tune
and amplitude function is the same for a gradient error and
an oscillating dipole field. Hence, reviewing the effects of a
gradient error is helpful to understand the driven oscillation.

Suppose a synchrotron has a gradient error with the strength
qerror = B′`/(Bρ) at the longitudinal position s = 0. Then, the
equation of motion is given by

x′′+ k(s)x =−qerror

[
∞

∑
n=−∞

δ (s−Cn)

]
x , (9)

where the prime denotes the derivative by the longitudinal co-
ordinate s, k is the spring constant, and δ is the Dirac’s delta
function.

By comparing the single turn transfer matrices with and
without the gradient error, the new tune νq and amplitude
function βq satisfy the following two equations [9]:

qerror = 2
cos(2πν)− cos(2πνq)

βerror sin(2πν)
(10)

βq

β
=

sin(2πν)
sin(2πνq)

−qβerror
sinψ sin(2πν−ψ)

sin(2πνq)
, (11)

where βerror is the amplitude function at the gradient error and
ψ is the phase advance measured from the gradient error. By
substituting the first equation into the second, the ratio be-
tween the new and original amplitude functions βq/β is given
by

βq

β
=

1+λ 2
q −2λq cos(2ψ−2πν)

1−λ 2
q

. (12)

Here, λq is a similar parameter to λd in Eq 3. It is defined with
the tune shift δq ≡ νq − ν : λq ≡ sin(πδq)/sin(2πν + πδq).
When the gradient error qerror is small, the new and original
amplitude functions satisfy

βq−β
β

'−2λq cos(2ψ−2πν) . (13)

This quantity behaving like a standing wave in a synchrotron
is the β -beat. The amplitude of the β -beat is 2|λq|.

B. Analogy to a Gradient Error

As seen in Eqs 6 and 12, the relation between βd and δd for
an oscillation dipole field is the same as the relation between
βq and δq for a gradient error. The following argument gives
an insight why an oscillating dipole field changes the ampli-
tude function like a gradient error.
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When the magnetic field of an AC dipole is maximum, the
equation of motion is given by

x′′+ k(s)x =−∑
n

θacd cos(2πνdn±χacd)δ (s−Cn) . (14)

The right-hand-side of this equation describes the kicks by the
AC dipole at s = 0. The summation is for the time period when
the magnetic field of the AC dipole field is maximum and the
sign in front of the initial phase χacd is the same convention
as Eq 4. Eq 4 is the particular solution of this inhomogeneous
Hill’s equation when the field of the AC dipole is adiabatically
ramped up to the maximum. Since the phase of the driven
oscillation ψd increases by 2πνd (mod 2π) in one revolution,
the position of the driven oscillation at the location of the AC
dipole s = Cn is

xd(Cn;δd) = Ad(δd)
√

βd(0;δd)cos(2πνdn±χacd) . (15)

Notice the phases of the driven oscillation xd and the AC
dipole in Eq 14 are both 2πνdn± χacd at the location of the
AC dipole. Hence, when the beam passes the AC dipole, its
magnetic field is proportional to the position of the driven os-
cillation xd like a quadrupole magnet. This is the physical
reason why an oscillating dipole field changes the amplitude
function like a gradient error. The phases of the driven oscil-
lation and the AC dipole are synchronized like this only when
the magnetic field of the AC dipole is maximum after the adi-
abatic ramp. The proportional constant of the driven motion
and the AC dipole field, qacd, is given by

qacd =
θacd

Ad
√

βd(0)
= 2

cos(2πν)− cos(2πνd)
βacd sin(2πν)

. (16)

The relation among qacd, νd , and βacd is the same as Eq 10.
Formally, the solution of Eq 14 xd satisfies the following equa-
tion

x′′d + k(s)xd =−qacd

[
∑
n

δ (s−Cn)
]

xd . (17)

This equation is exactly the same as the Hill’s equation with
an gradient error Eq 9. By comparing Eqs 9, 10, 16, and 17,
it is trivial that the relation of βd and δd is the same as the
relation of βq and δq.

C. Ring-wide Behavior of βd

From the previous two sections, the amplitude function βd
behaves as if there is a gradient error. Hence, βd is beating
relative to β and the beating amplitude is about 2|λd | from Eq
13. Remember the effect of the secondary driving term on the
beam motion is the order of λd . Since the amplitude function
is proportional to the square of the position, its effect on the
amplitude function is the order of 2|λd |.

As discussed before, the minimum difference between the
primary driving tune and machine tune δd is about 0.01 for
the LHC, RHIC, and Tevatron. Then, the difference of the
amplitude functions β and βd satisfy |βd − β |/β . 2|λd | '

TABLE I: Difference between amplitude functions of the free and
driven betatron oscillations β and βd in the LHC, RHIC, and Teva-
tron. The last line is the beating amplitude of βd relative to β .

Parameter LHC RHIC Tevatron
ν .3 .7 .58
|δd | .01 .01 .01

2|λd | 6-7% 6-7% 12-13%

0.06/sin(2πν). Table I shows the estimated beating ampli-
tude of βd relative to β in the LHC, RHIC, and Tevatron when
δd = 0.01. Since the magnitude of sin(2πν) cannot be larger
than one, the beating amplitude 2|λd | cannot be smaller than
6% when δd = 0.01. As seen in Fig 2, the effect of the sec-
ondary driving term gets larger when the machine tune gets
closer to the half integer. This is why the beating amplitude
for the Tevatron is larger compared to the LHC and RHIC.

When turn-by-turn beam positions at all BPMs are given for
the free oscillation, the relative β -function can be computed
by simply comparing the square of the oscillation amplitude at
each BPM. If the same analysis is applied to the turn-by-turn
data of the driven oscillation, what is calculated is βd instead
of the β . If the difference between βd and β is simply ignored
and β is determined in this way, the error is as large as 2|λd |.
Even worse, since the beating of βd cannot be distinguished
from the real β -beat caused by gradient errors, the real β -beat
cannot be measured without depending on a machine model
in this way.

To calculate β from turn-by-turn data of the driven oscilla-
tion without depending on a machine model, multiple sets of
data are necessary [5]. Fig 3 shows amplitude functions of the
free and driven oscillations β and βd(δd = −0.01). They are
both measured from data of the driven oscillation. Multiple

B0 C0 D0 E0 F0 A0 B0
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β d
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β − solid βd(δd =−0.01) − dashed

FIG. 3: The amplitude functions of the free and driven oscillations:
β (solid) and βd when δd =−0.01 (dashed). Both β and βd is calcu-
lated from turn-by-turn data of the driven oscillation. Multiple data
sets are used for β [5] and the amplitude square is simply compared
at each BPM for βd . As expected, βd shows the 10-15% beating
relative to β . If the difference of β and βd is simply ignored, the
β measurement has this much error and the real β -beat cannot be
distinguished from the beating of βd .



5

-0.04 -0.02 0 0.02 0.04
0.4

0.6

0.8

1

1.2

1.4

1.6

0 deg 30 deg 45 deg 60 deg 90 deg

-0.04 -0.02 0 0.02 0.04
0.4

0.6

0.8

1

1.2

1.4

1.6

0 deg 30 deg 45 deg 60 deg 90 deg

ν = 0.58

δd

β d
/

β

ψ−πν

ν = 0.3

δd

β d
/

β

ψ−πν

FIG. 4: The relation between the amplitude functions of the free and driven betatron oscillations β and βd . The ratio βd/β is numerically
calculated from Eq 6 by changing the difference between the primary driving tune and machine tune δd and the phase advance ψ . The left
plot is for the machine tune 0.58 like the Tevatron and the right is for 0.3 like the LHC and RHIC. Since the secondary driving term gets closer
and λd gets larger when the machine tune is closer to the half integer, βd/β is larger and the nonlinearity is stronger in the left plot. The
nonlinearity gets larger when ψ−πν gets closer to 45 deg and cos(2ψ−2πν) gets closer to zero.

data sets are used to calculate β as described in [5] and βd is
calculated by comparing the square of the amplitude at each
BPM. In the arc of the Tevatron, β is about 100 m and βd is
showing the beta-beat like structure of 10-15% (±10-15 m) as
expected in the table I.

D. Relation between βd and δd

In the previous section, only the lowest order is consid-
ered in the relation between β and βd . From Eq 6, the re-
lation becomes nonlinear when λd is large or the phase term
cos(2ψ−2πν) is close to zero. As already seen in the previ-
ous section, the difference of β and βd has not a small impact
on the linear optics measurement. Hence, it is important to
understand the properties of Eq 6 in wide ranges of parame-
ters. Fig 4 shows the numerical simulations of βd/β based on
Eq 6. Two plots are for two different machine tunes: ν = 0.58
like the Tevatron and ν = 0.3 like the LHC and RHIC. Since
λd with ν = 0.58 is almost twice of λd with ν = 0.3 for the
same δd , the nonlinearity grows much faster with δd in the
left plot with ν = 0.58. It is also clear in the left plot that the
nonlinearity gets larger when |cos(2ψ − 2πν)| gets closer to
zero. Such a nonlinear relation between βd and δd can be ac-
tually seen for the driven oscillation excited in the Tevatron.
An example is shown in the next section.

IV. EVIDENCES OF THE SECONDARY DRIVING TERM

This section presents two more properties of the driven be-
tatron oscillation measured in the Tevatron. The model in-
cluding the secondary driving term (or the different amplitude
function for the driven oscillation) fits well to both of the ex-
amples. These examples support the importance of the sec-
ondary driving term in the driven oscillation.

A. Rotation of the Phase Space Ellipse

Parameters corresponding to the other Courant-Snyder pa-
rameters α and γ can be also defined from the amplitude func-
tion of the driven oscillation βd as the free oscillation:

αd(s;δd)≡−1
2

dβd(s;δd)
ds

(18)

γd(s;δd)≡ 1+αd(s;δd)2

βd(s;δd)
. (19)

The explicit forms of these parameters are given by

αd =
1+λ 2

d −2λd cos(2ψ−2πν)
1−λ 2

d
α

− 2λd sin(2ψ−2πν)
1−λ 2

d
(20)

γd =
1+λ 2

d +2λd cos(2ψ +2arctanα−2πν)
1−λ 2

d
γ . (21)

When βd , αd , γd , and Ad are defined this way, they satisfy a
relation like Courant-Snyder invariance:

A2
d = γdx2

d +2αdxdx′d +βdx′2d . (22)

Therefore, the turn-by-turn position and angle of the driven
oscillation also form an ellipse on the phase space. like the
free oscillation. Since not only Ad but also the Courant-Snyder
like parameters βd , αd , and γd depend on the difference be-
tween the primary driving tune νd and the machine tune ν :
δd , both the area and shape of the phase space ellipse changes
with δd for the driven oscillation. In two collision straight sec-
tions of the Tevatron, B0 and D0, there are pairs of BPMs with
no magnet in-between. Hence a beam runs straight between a
pair of BPMs and both position and angle at any location be-
tween a pair of BPMs can be directly measured. Fig 5 shows
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FIG. 5: Phase space ellipses of the driven oscillations when δd =
±0.02 and ±0.04. Here, δd is the difference between the primary
driving term and the machine tune. Since the Courant-Snyder like
parameters of the driven oscillation βd , αd , and γd depend on δd , not
only the area but also the shape of the ellipse changes along with δd .
The figure is the phase space at one of the low-β location (B0) of the
Tevatron where the derivative of the amplitude function α is zero by
design.

the measured phase ellipses of the driven oscillations by using
a pair of such BPMs. When the frequency of the AC dipole
was changed to adjust δd to ±0.04 and ±0.02, the kick angle
of the AC dipole θacd was kept the same. As expected, the
shape of the phase space ellipse changes with δd . Since δd de-
pendence of βd , αd , and γd comes from the secondary driving
term, the rotation of the phase space ellipse is its qualitative
evidence.

By fitting Eq (22) to an ellipse in Fig 5, its area πA2
d , βd ,

αd , and γd can be determined. Fig 6 shows measured βd from
the fits to ellipses in Fig 5 (and three more). The line in the
figure is the fit of Eq 6 to the data with parameters β and ψ .
The model of Eq 6 is fitting well to the data even though the
nonlinearity is strong in the relation between βd and δd at the
location. The β -function at the location can be calculated as
one of the fit parameter. In the figure, β = βd(δd = 0).

B. Asymmetric Oscillation Amplitude around the Tune

If the secondary driving term is negligible, by ignoring the
smaller term of Eq 2 or taking the limit of λd → 0 in Eqs 4, 5,
and 6, the amplitude of the driven oscillation can be approxi-
mated by

a(0)
d (s;δd)≡

θacd
√

βacdβ (s)
4|sin(πδd)|

. (23)

Remember δd is the difference between the primary driving
tune and the machine tune: νd−ν . In this case, the amplitude
of the driven oscillation depends on the primary driving tune
νd only through |sin(πδd)| and is symmetric around the tune
ν . From Eqs 4, 5, and 6, the amplitude including the effect of

-0.04 -0.02 0 0.02 0.04

(driving tune) - (natural tune)

1.6

1.8

2

2.2

2.4

data

fit

δd

β d
[m

]

FIG. 6: The relation between the amplitude function of the driven
oscillation βd and the difference between the primary driving tune
to the machine tune δd . The location is the same low-β point of the
Tevatron (B0) as Fig 5. The amplitude function βd at each data point
is determined from the shape of an ellipse in Fig 5. The line is the
fit of Eq 6 to the data points. Despite the strong nonlinearity, Eq
6 is fitting well. In the figure, βd(δd = 0) corresponds to β at the
location.

the secondary driving term ad(s;δd) is given by

ad(s;δd)

= a(0)
d (s;δd)

√
1+λ 2

d −2λd cos(2ψ(s)−2πν) . (24)

Now, the amplitude depends on νd through the factor [1 +
λ 2

d − 2λd cos(2ψ(s)− 2πν)]1/2 too. Up to the first order of
δd , the amplitude is approximated by

ad(s;δd)' a(0)
d (s;δd)

[
1− π cos(2ψ(s)−2πν)

sin(2πν)
δd

]
. (25)

Hence, the secondary driving term makes the νd dependence
of the amplitude asymmetric around the machine tune ν . The
magnitude of this asymmetry at each location is determined
by the factor cos(2ψ−2πν) [? ].

Fig 7 shows the relation between the amplitude of the
driven oscillation and νd at three BPM locations in the Teva-
tron. In the measurements, only the frequency of the AC
dipole was changed and its kick angle θacd was kept the same.
The dashed and solid lines represent the fits of Eq 23 and Eq
24 to the data. The fit parameters are θacd[βacdβ (s)]1/2 and
ν for Eq 23 and θacd[βacdβ (s)]1/2, ν , and ψ for Eq 24 [? ].
At two locations where |cos(2ψ − 2πν)| is close to one, the
asymmetry around the machine tune (ν ' 0.5785) is clear and
the fit without the secondary driving term (Eq 23) is off the
data.

Although the effect of the secondary driven term is clear
in Fig ??, there is even a better evidence that Eq 24 with the
secondary driving term fits the data better. From the fits in Fig
7, the machine tune ν is determined at each BPM location. Fig
8 shows machine tunes determined at all BPM locations from
the fits of the amplitude versus νd . The dashed and solid lines
represent machine tunes from the fits of Eqs 23 and 24. Since
the machine tune ν is a constant of a synchrotron, variations of
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FIG. 7: The relation between the amplitude of the driven oscilla-
tion and the primary driving tune νd at three BPM locations in the
Tevatron. In the measurements, only νd was changed. The solid
and dashed lines are fits with and without the effect of the sec-
ondary driving term. The asymmetry around the tune ν ' 0.5785
becomes clear when |cos(2ψ−2πν)| ' 1. In the second plot where
cos(2ψ−2πν) > 1, the amplitude is larger in the region νd > ν . As
predicted from Eq 25, the relation flips in the third plot where the
sign of cos(2ψ−2πν) becomes negative.

the measured machine tune over BPMs show the inaccuracy
of the measurement. From the figure, it is clear the model
including the secondary driving fits to the data mush better.
This is another qualitative evidence of the secondary driving
term effect in the driven oscillation.
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FIG. 8: The measured machine tune at all BPM locations from the
fits of the amplitude versus the primary driving tune νd in Fig 7. The
solid line includes the effect of the secondary driving term and the
dashed line does not. Since the tune is a constant of a synchrotron,
the equation with the secondary driving term is the better model of
the driven oscillation. The beating of the dashed line is caused by
ignoring the beating of βd relative to β .

V. CONCLUSION

An oscillating field of an AC dipole creates two driving
terms for a circulating beam: primary and secondary. The sec-
ondary driving term actually has important roles in the driven
oscillation. If it is simply ignored, linear optics measurements
using an AC dipole could be affected 6-7% in the LHC and
RHIC and 12-13% in the Tevatron. For the driven oscilla-
tion in the Tevatron, the effects of the secondary driving term
could seen in the data. Examples are the change of the am-
plitude function and the rotation of the phase space ellipse.
The paper presented a model of the driven oscillation which
includes the effects from both of the driving terms. The model
fitted well to the data of the driven oscillation in the Tevatron.
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[] The most common example of the sampling theorem in accel-
erator physics is two peaks of the tune spectrum on a Schottky
monitor.

[] The exact expression of xd includes other modes which are in-
versely proportional to the ramp up time and oscillate with the
machine tune ν . If the ramp up is slow enough, all of these
modes are very small and even decohere before the end of the
ramp up. Hence these ignored modes do not affect the motion
of the beam centroid but they affect the beam size[11].

[] The origin of this behavior is βd . As seen in Fig 4, the relation
between βd and δd is quite nonlinear in the Tevatron and so Eq
25 is not a good approximation for the quantitative argument. It
is good only for the qualitative argument.

[] The ring-wide β function is determined from the fit of Eq
ad(s;δd) up to a constant θacd

√
βacd. The constant can be de-

termined from the analysis using a pair of BPMs in the collision
straight sections. See [5] for details. The phase advance ψ can
be also determined for the fit.


